Результаты эксперимента Muon g-2 идут вразрез с фундаментальной физикой - «Наука и технологии»
Буквально на днях представители международной группы ученых, задействованных в проведении эксперимента Muon g-2 Experiment в стенах Национальной лаборатории имени Ферми, опубликовали результаты своих исследований, которые касаются некоторых свойств и особенностей поведения мюонов, более тяжелых
Буквально на днях представители международной группы ученых, задействованных в проведении эксперимента Muon g-2 Experiment в стенах Национальной лаборатории имени Ферми, опубликовали результаты своих исследований, которые касаются некоторых свойств и особенностей поведения мюонов, более тяжелых "родственников" электронов, в условиях сильного магнитного поля. Если дальнейшие работы в данном направлении подтвердят первоначальные выводы, то ученые столкнутся "лицом к лицу" с необъяснимым несоответствием между экспериментальными данными и основной теорией физики элементарных частиц, называемой Стандартной Моделью.
Отметим, что ученые-физики постоянно производят высокоточные измерения значений параметров различных частиц и особенностей их поведения, что позволяет им проникать глубже и постепенно раскрывать тайны устройства нашей Вселенной. Одним их таких параметров частиц является магнитный момент, определяющий поведение этой частицы в присутствии магнитного поля. Предыдущие измерения магнитного момента мюона, произведенные учеными Национальной лаборатории Брукхейвена, показали, что реальное значение этой величины находится очень далеко от того, которое дают прогнозы Стандартной Модели. И новые, более высокоточные измерения магнитного момента мюона, произведенные в рамках эксперимента Muon g-2, дали результат, очень хорошо согласующийся с результатами предыдущих измерений.
Однако, если сложить данные предыдущих и новых измерений значения магнитного момента мюона, то их статистическая достоверность становится равной 4.2 стандартных отклонения (сигма). А как хорошо известно нашим постоянным читателям, что для признания какого-либо факта реальным научным открытием требуется показатель в 5 сигма, который оставляет вероятность статистической ошибки в один шанс на 3.5 миллиона.
Первые измерения величины магнитного момента были проведены в 1928 году физиком Полом Дираком, которые получил значение магнитного момента электрона равное ровно 2. Однако позже были проведены и другие измерения этой величины, которые давали результаты с незначительным разбросом. Первые измерения магнитного момента мюона были проведены в 2001 году, а доказательства несоответствия реального значения момента Стандартной Модели были впервые получены в 2004 году.
Десятилетие спустя физики решили провести более точный эксперимент, для чего 15-метровое кольцо специального магнита было перевезено практически через всю Америку из одной лаборатории в другую. И в 2017 году в Лаборатории имени Ферми стартовал эксперимент Muon g-2.
Эксперимент начинается с разгона протонов в одном из ускорителей, после чего они направляются на стационарную мишень. Удар протонов по мишени порождает еще большее количество протонов, антимюоны и пионы, частицы, которые быстро распадаются и порождают дополнительные антимюоны. Этот получившийся луч из частиц движется внутри кольца установки почти со скоростью света, все это время антимюоны постепенно распадаются и из луча вылетают результаты этого распада - анти-электроны (позитроны). Измерение параметров этих позитронов при помощи датчиков позволяет ученым определит то, как антимюоны вели себя в условиях магнитного поля и, таким образом, вычислить значение магнитного момента. Такой подход был выбран из-за того, что чистые антимюоны получить гораздо легче, чем чистые мюоны, а значение магнитного момента у этих двух типов частиц абсолютно одинаково.
Несмотря на получение массы новых экспериментальных данных, ученым пока еще неизвестны причины возникновения несоответствия между этими данными и Стандартной Моделью. "Если несоответствие реально, то мы сможем обнаружить его проявления где-нибудь далеко в глубинах космоса" - рассказывает Джо Ликкен (Joe Lykken), один из исследователей, - "И, вполне вероятно, что причины этого несоответствия уже находятся где-то в наших данных, и мы должны провести анализ, который позволит их выявить".
Несмотря на завершение эксперимента Muon g-2, ученым еще рано открывать шампанское. Им предстоит еще проделать много работы по анализу данных для того, чтобы уменьшить статистическую ошибку и увеличить точность полученного значения магнитного момента мюона. "Мы до сих пор охватили анализом всего 6 процентов от общего объема собранных нами данных" - пишут исследователи, - "Когда мы проведем объединение и других частей данных мы сможем получить большую точность измерений и статистическую вероятность, которой будет достаточно для признания реального открытия".
Минимальная длина комментария - 50 знаков. комментарии модерируются